Improving Lower Bounds for the Quadratic Assignment Problem by applying a Distributed Dual Ascent Algorithm

نویسندگان

  • Alexandre Domingues Gonçalves
  • Lúcia Maria de A. Drummond
  • Artur Alves Pessoa
  • Peter M. Hahn
چکیده

The application of the Reformulation Linearization Technique (RLT) to the Quadratic Assignment Problem (QAP) leads to a tight linear relaxation with huge dimensions that is hard to solve. Previous works found in the literature show that these relaxations combined with branch-and-bound algorithms belong to the state-of-the-art of exact methods for the QAP. For the level 3 RLT (RLT3), using this relaxation is prohibitive in conventional machines for instances with more than 22 locations due to memory limitations. This paper presents a distributed version of a dual ascent algorithm for the RLT3 QAP relaxation that approximately solves it for instances with up to 30 locations for the first time. Although, basically, the distributed algorithm has been implemented on top of its sequential conterpart, some changes, which improved not only the parallel performance but also the quality of solutions, were proposed here. When compared to other lower bounding methods found in the literature, our algorithm generates the best known lower bounds for 26 out of the 28 tested instances, reaching the optimal solution in 18 of them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rlt2-based Parallel Algorithms for Solving Large Quadratic Assignment Problems on Graphics Processing Unit Clusters

This paper discusses efficient parallel algorithms for obtaining strong lower bounds and exact solutions for large instances of the Quadratic Assignment Problem (QAP). Our parallel architecture is comprised of both multi-core processors and Compute Unified Device Architecture (CUDA) enabled NVIDIA Graphics Processing Units (GPUs) on the Blue Waters Supercomputing Facility at the University of I...

متن کامل

RLT2-based Parallel Algorithms for Solving Large Quadratic Assignment Problems on Graphics Processing Unit Clusters

This paper discusses efficient parallel algorithms for obtaining strong lower bounds and exact solutions for large instances of the Quadratic Assignment Problem (QAP). Our parallel architecture is comprised of both multi-core processors and Compute Unified Device Architecture (CUDA) enabled NVIDIA Graphics Processing Units (GPUs) on the Blue Waters Supercomputing Facility at the University of I...

متن کامل

Lower Bounds for the Quadratic Assignment Problem

We investigate the classical Gilmore-Lawler lower bound for the quadratic assignment problem. We provide evidence of the difficulty of improving the Gilmore-Lawler Bound and develop new bounds by means of optimal reduction schemes. Computational results are reported indicating that the new lower bounds have advantages over previous bounds and can be used in a branch-and-bound type algorithm for...

متن کامل

Robust Quadratic Assignment Problem with Uncertain Locations

 We consider a generalization of the classical quadratic assignment problem, where coordinates of locations are uncertain and only upper and lower bounds are known for each coordinate. We develop a mixed integer linear programming model as a robust counterpart of the proposed uncertain model. A key challenge is that, since the uncertain model involves nonlinear objective function of the ...

متن کامل

Computing Lower Bounds for the Quadratic Assignment Problem with an Interior Point Algorithm for Linear Programming

A typical example of the quadratic assignment problem (QAP) is the facility location problem, in which a set of n facilities are to be assigned, at minimum cost, to an equal number of locations. Between each pair of facilities, there is a given amount of flow, contributing a cost equal to the product of the flow and the distance between locations to which the facilities are assigned. Proving op...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1304.0267  شماره 

صفحات  -

تاریخ انتشار 2013